Electrokinetic pumping effects of charged porous media in microchannels using the lattice Poisson-Boltzmann method.
نویسندگان
چکیده
The electrokinetic pumping characteristics of nanoscale charged porous media packed in microchannels are investigated using a mesoscopic evolution method. When the pore size of porous media is comparable to the thickness of electric double layer, the effects of particle surface potentials on the bulk electric potential distribution will not be negligible. The lattice Poisson-Boltzmann method provides an accurate numerical solution for such problems, which combines two sets of lattice evolution methods solving the nonlinear Poisson-Boltzmann equation for electric potential distribution and the Navier-Stokes equations for fluid flow, respectively. The effects of the finite particle size, the bulk ionic concentration, the external electric field strength and the surface potentials on the electroosmotic micropump performances are therefore studied. The results show that for a certain porosity the maximum pumping pressure is inversely proportional to the particle diameter and the flow rate under zero pressure drop increases with the particle size. The pumping flow rate decreases with the backpressure yet increases with the external electric field strength, linearly respectively. The averaged flow rate increases with the bulk ionic concentration and the particle surface potential, but is slightly influenced by the surface potentials of channel walls. The numerical results agree with the published experimental data while some results deviate from the predictions based on the macroscopic linear assumptions.
منابع مشابه
Modeling electrokinetic flows in microchannels using coupled lattice Boltzmann methods
We present a numerical framework to solve the dynamic model for electrokinetic flows in microchannels using coupled lattice Boltzmann methods. The governing equation for each transport process is solved by a lattice Boltzmann model and the entire process is simulated through an iteration procedure. After validation, the present method is used to study the applicability of the Poisson–Boltzmann ...
متن کاملUsing Lattice Boltzmann Method to Investigate the Effects of Porous Media on Heat Transfer from Solid Block inside a Channel
A numerical investigation of forced convection in a channel with hot solid block inside a square porous block mounted on a bottom wall was carried out. The lattice Boltzmann method was applied for numerical simulations. The fluid flow in the porous media was simulated by Brinkman-Forchheimer model. The effects of parameters such as porosity and thermal conductivity ratio over flow pattern and t...
متن کاملWaLBerla: Investigation of Electrostatic Effects in Particulate and Electro-Osmotic Flows
The understanding of electrokinetic transport of fluid or particles in microchannel plays an important role in the design and the optimization of microand nanofluidic devices. Two important electrokinetic phenomena are electro-osmosis and electrophoresis. In order to study these phenomena, the lattice Boltzmann solver is coupled with the iteration solver for the Poisson equation. Using these nu...
متن کاملInvestigation of pore-scale random porous media using lattice boltzmann method
The permeability and tortuosity of pore-scale two and three-dimensional random porous media were calculated using the Lattice Boltzmann method (LBM). Effects of geometrical parameters of medium on permeability and tortuosity were investigated as well. Two major models of random porous media were reconstructed by computerized tomography method: Randomly distributed rectangular obstacles in a uni...
متن کاملGas-liquid Relative Permeability Estimation in 2D Porous Media by Lattice Boltzmann Method: Low Viscosity Ratio 2D LBM Relative Permeability
This work is a primary achievement in studying the CO2 and N2–oil systems. To predict gas-liquid relative permeability curves, a Shan-Chen type multicomponent multiphase lattice Boltzmann model for two-phase flow through 2D porous media is developed. Periodic and bounce back boundary conditions are applied to the model with the Guo scheme for the external body force (i.e.,...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of colloid and interface science
دوره 304 1 شماره
صفحات -
تاریخ انتشار 2006